您的位置: 旅游网 > 情感

如何利用JAVA实现斐波那契数

发布时间:2019-10-16 19:03:29

求Fibonacci数列的前20个数。该数列有如下特点: 第1, 2两个数为0,1。从第3个数开始,每个数等于前2个数之和。

生成方法为:

F1=1(n=1)

F2=1 (n=2)

Fn=Fn-1+Fn-2 (n>=3)

java 代码

public class Fibonacci {

/*输出斐波那契数*/

public static void printFibonacciNumber(long f1,long f2,int n){//the first number, the second number,the totel fibonacci numbers

for(int i = 1;i <= n;i++){

System.out.print(f1+" "+f2+" ");//先输出前两个数

if(i % 5 == 0)System.out.print("\n"); //换行

f1 = f1+f2; //计算下两个数

f2 = f1+f2;

}

/*后数除前数为黄金分割点*/

System.out.print("\n"+"-------------------------------------"+"\n");

System.out.println((double)f2/f1);//越到后边,后数除前数越接近黄金分割点

}

/*输出斐波那契数组*/

public static void printFibonacciArray(long f1,long f2,int n){//the first number, the second number,the totel fibonacci numbers

long f[] = new long[n];

f[0]=f1;

f[1]=f2;

for(int i =2;i

f[i]=f[i-2]+f[i-1]; //数组的第三个数开始为前两个数的和

}

System.out.println("-------------------------------------"+"\n");

System.out.println(java.util.Arrays.toString(f)); //把数组转化成String输出

}

/**

* main method

* @param args

*/

public static void main(String[] args) {

Fibonacci.printFibonacciNumber(0, 1, 10);//print the 20 advanced fibonacci number

Fibonacci.printFibonacciArray(0, 1, 20);

}

}

输出结果:

0 1 1 2 3 5 8 13 21 34

55 89 144 233 377 610 987 1597 2584 4181

-------------------------------------

1.6180339985218033

-------------------------------------

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181]

小知识(摘录):

斐波那契是意大利的数学家。他是一个商人的儿子。儿童时代跟随父亲到了阿尔及利亚,在那里学到了许多阿拉伯的算术和代数知识,从而对数学产生了浓厚的兴趣。

长大以后,因为商业贸易关系,他走遍了许多国家,到过埃及、叙利亚、希腊、西西里和法兰西。每到一处他都留心搜集数学知识。回国后,他把搜集到的算术和代数材料,进行研究、整理,编写成一本书,取名为《算盘之书》,于1202年正式出版。

这本书是欧洲人从亚洲学来的算术和代数知识的整理和总结,它推动了欧洲数学的发展。其中有一道“兔子数目”的问题是这样的:一个人到集市上买了一对小兔子,一个月后,这对小兔子长成一对大兔子。然后这对大兔子每过一个月就可以生一对小兔子,而每对小兔子也都是经过一个月可以长成大兔子,长成大兔后也是每经过一个月就可以生一对小兔子。那么,从此人在市场上买回那对小兔子算起,每个月后,他拥有多少对小兔子和多少对大兔子?

这是一个有趣的问题。当你将小兔子和大兔子的对数算出以后,你将发现这是一个很有规律的数列,而且这个数列与一些自然现象有关。人们为了纪念这位兔子问题的创始人,就把这个数列称为“斐波那契数列”。

又找到了这么一段话:

规律表:

月数 小兔 中兔 老兔 总数

1 1 0 0 1

2 0 1 0 1

3 1 0 1 2

4 1 1 1 3

5 2 1 2 5

6 3 2 3 8

7 5 3 5 13

在计算每一行时,大兔数为上月的大兔数加上月的中兔数,中兔数为上月的小兔数,小兔数为本月的大兔数,算总数为本月的小兔数加本月的中兔数加本月的大兔数。在观察总数的过程中找出了规律:总数的第一、二月都是1,以后的每一月是前两月的和。数列为1,1,2,3,5,8,13,21,34,55,……

当n=50时,后项与前项的比是1.61803398874989,而前项与后项的比是0.61803398874989,即b/a的值与a/b的值相差1,假设后项与前项的比是φ,则有(φ-1)/φ=1,解这个方程得:φ=(√5+1) /2,这就是黄金分割。

当n充分大时,斐波纳契数列后前项的比值,与前后项的比值,相差1,它们的比值是黄金分割!黄金分割是一个十分有用的无理数。据此,把黄金分割可用一个有理数近似表示,如斐波纳契数列的第七项与斐波纳契数列的第六项的比13/8,斐波纳契数列的第九项与斐波纳契数列的第八项的比34/21等都可以近似地表示为黄金分割,当然项数越后越精确。

查看本文来源

包头治疗包皮过长医院
达州治疗妇科方法
自贡治疗输卵管堵塞医院
鸡西牛皮癣治疗方法
兰州治疗输卵管堵塞医院
猜你会喜欢的
猜你会喜欢的